Instruction

Linear Motion Designer

Version 3.1
Start page

Menu
- Settings
 - Language
 - Units
 - User settings
- Informations
 - Conditions of License
 - Version / Releasenotes
 - Help
- Calculation Planning Guide

Dimensioning / Calculation
- Profiled Rail System (PRS)
- Screw Assemblies (SA)
- PRS und SA in one step
- Linear Bushings
Application

Applies to Profiled rail system and Linear bushing

6 applications are selectable.

If your application is not included you are welcome to contact Bosch-Rexroth.
(see „Project“, Request of Information or visit our product side on the Bosch-Rexroth homepage

www.boschrexroth.com/lmd)
System dimensions

Applies to Profiled rail system and Linear bushing

1. Drive
 - Input to the position of the drive
 - Schematic representation
 - Stiffness in X-direction
 - Stiffness of the drive, if known
 (Influence on the displacement calculation in X-direction)

2. Dimensioning
 - Input runner block/bushing distance
 - Input guide rails/shafts distance
 (Required fields)

3. Rotation angle
 Rotation angle α: Rotation around the X-axis (f.e. 90° at wall mounting)
 Rotation angle β: Rotation around the Y-axis (f.e. 90° at vertical applications)

Text with dotted subline
Mouseover help text
Screw Assembly journal bearing
- Fixed - Lose
- Fixed - Fixed
- Fixed - Free

Lead of screw (Required fields)
- The lead can still be adjusted when selecting the nut

Bearing centre to centre distance (Required fields)
- The value is determined exactly after selection of the spindle ends

Rotation angle β
- f.e. 90° at vertical applications

Text with dotted subline
= Mouseover help text
Dynamics

Linear Motion Designer
Version 3.1

Dynamics
4 input options

- **Dynamic cycle**
 - Input via velocity, acceleration, time, distance

- **Part of time**
 - Input via percentage duty cycle of the respective phases and average speed

- **Percentage of stroke**
 - Distance of the respective phases and average speed

- A change between the input options is possible

- **Motion profile**
 - Predefined cycles
 - Input via stroke and time

Text with dotted subline
= Mouseover help text
Process data

1. **Masses**
 - Input up to 9 masses
 - Masses generally activated
 - Acceleration forces in direction of travel are calculated automatically
 - For multi-axis applications, enter the lateral acceleration \(a_{quer, y}\) and \(a_{quer, z}\) in the respective phases. The lateral forces are calculated automatically

2. **Forces**
 - Input up to 12 forces
 - Forces must still be activated in the active phases

3. **Additional loads**
 - The additional load is added to each carriage in each phases

4. **Tips**
 - Calculation assumptions and design tips
Result Runner block

- Service Performance: Input data to service performance, or required lifetime
- Lubrication: Calculation to lubrication interval and quantity
- Selection guide: Product proposal based on industry and application specifications

- Calculation
 - Automatically detection if the runner block distance is too small (deselected)
 - Automatically detection from short stroke (deselected)
 - Automatically matching from limiting values (max. acceleration, max. velocity, …)
 - Notes at low load ratio

- Show Deflection
 - See next page

- Help
 - Shows the legend to descriptions and informations about the various load ratios

Text with dotted subline

--- Mouseover help text
Deflection

Deflection values of the individual application force points in the respective phases
- Red values are max. values per phase, per appl. force point

Deflection of the application force points refer to unloaded condition
- Starting position is an unloaded condition on the runner blocks

Deflection of the application force points refer to phase T1...T18
- f.e. phase T2, the deflection values in phase T2 are set to zero
Filter criteria
- Preselection for a much quicker bushing selection

Calculation
- Automatically detection if the bushing distance is too small (deselected)
- Automatically detection from short stroke (deselected)
- Automatically matching from limiting values (max. acceleration, max. velocity, ...)
- Consideration of reduction factors due to shaft hardness >60HRC, temperature >100°C
- Notes at low load ratio

Help
- Shows the legend to descriptions and informations about the various load ratios

Text with dotted subline

= Mouseover help text
Result Screw Assembly - Nut

Unit end bearing: Specification of spindle ends or end bearing
- Lubrication: Calculation to lubrication interval and quantity
- Service Performance: Input data to service performance, or required lifetime

Calculation
- Automatically detection of critical speed and max. permissible axial load
- Automatically detection from short stroke (deselected)
- Automatically matching from limiting values (max. acceleration, max. velocity, ...)
- Notes at low load ratio

Show critical speed
- See next page

Help
- Shows the legend to descriptions and informations about the various load ratios

Text with dotted subline

= Mouseover help text
Depending on the position the critical speed can be read off the diagram. Thus in certain stroke ranges the permissible critical speed can be higher.
Result Screw Assembly - Spindle

- Selection of a suitable bearing unit
 - Form and version are defined
- Selection form and version of the spindle ends
 - Details in the product catalogue
- Bearing centre to centre distance
 - Value from "system dimensions"
- Minimum length
 - The minimum bearing centre to centre distance calculated via stroke, length of the nut and non-usable spindle length
- Warning massages
 - Matching of the max. permissible drive torque on the spindle journal
 - Matching of the load capacity of the end bearing < load capacity of the nut
- Help
 - Shows the legend to descriptions and informations about the various load ratios

Text with dotted subline = Mouseover help text
Linear Motion Designer
Version 3.1

1. Documentation
 - Create a rtf-document (Print-out)

2. Online-Catalogue
 - Direct link to the calculated product to the online catalogue for additional information

3. CAD
 - Link to the configurator
 - Transferring the existing parameters to the configurator

4. Request consultation
 - Mailbox of the technical design and support center at Bosch-Rexroth Linear technology
Definitions

- **Zero point**
 - Centerline between the runner blocks/bushings in X-direction
 - Centerline between the guide rails/shafts in Y-direction
 - On the top mounting surface plane in Z-direction

- **Rotation of the axis**
 - The coordinate system also rotates

- **Definition moving direction**
 - Moving direction of the axis is always X-direction

- **System requirements at Profiled rails system**
 - Moving: Guide rails fixed; runner blocks are moving
 - Mounting: Form lock fixing from guide rails and runner blocks