

Proportional pressure reducing valve, direct operated, increasing characteristic curve MHDRE 06 SK

Features

- Direct operated proportional pressure reducing valve for reducing the system pressure
- Pilot control valve
- Screw-in cartridge valve
- Suitable for mobile applications
- Operation by means of proportional solenoid
- ▶ In case of power failure, the minimum pressure is set
- Recommended control electronics: Type RA and RC mobile amplifiers

- Size 6
- Series 3X
- Maximum control pressure 30 bar
- Maximum flow 40 l/min

Contents

Ordering code	2
Preferred types	2
Functional description	3
Technical data	4
Permissible working range	6
Characteristic curves	6
Dimensions	8
Individual components available	10
Related documents	10

Ordering code

01	02	03	04	05		06	07	08	09	10	11
MHDRE	06	S	К	3X	/		Α			v	*

Valve type

01	01 Proportional pressure reducing valve, direct operated					
02	Size 6	06				
03	Increasing characteristic curve	S				
04	Screw-in cartridge valve	к				
Series	Series					
05	Series 30 39 (30 39; unchanged installation and connection dimensions)	3X				

Maximum control pressure

06	18 bar	18
	20 bar	20
	26 bar	26
	30 bar ¹⁾	30

07	Proportional solenoid, wet-pin	А	
----	--------------------------------	---	--

Supply voltage

08	Control electronics 12 V DC	G12
	Control electronics 24 V DC	G24

Electrical connection²⁾

09	Device connector according to DIN EN 175301-803	К4				
	Device connector 2-pin DT 04-2P (DEUTSCH)	K40				
	Device connector 2-pin, Junior Timer (AMP)	C4				
Sealing	Sealing material					

10	FKM (fluorocarbon rubber)	v	
11	Further details in plain text	*	

Preferred types

Туре	Material number	Туре	Material numbe
MHDRE 06 SK3X/18AG12K40V	R901220628	MHDRE 06 SK3X/18AG24K40V	R901156353
MHDRE 06 SK3X/20AG12K40V	R901150864	MHDRE 06 SK3X/20AG24K40V	R901220641
MHDRE 06 SK3X/26AG12K40V	R901220722	MHDRE 06 SK3X/26AG24K40V	R901220719
MHDRE 06 SK3X/30AG12K40V-012	R901198094	MHDRE 06 SK3X/30AG24K40V-012	R901156485

1) 30 bar pressure stage only available in the flow-optimized version **-012**

2) Plug-in connectors are not included in the scope of delivery and must be ordered separately, see data sheet 08006.

Functional description

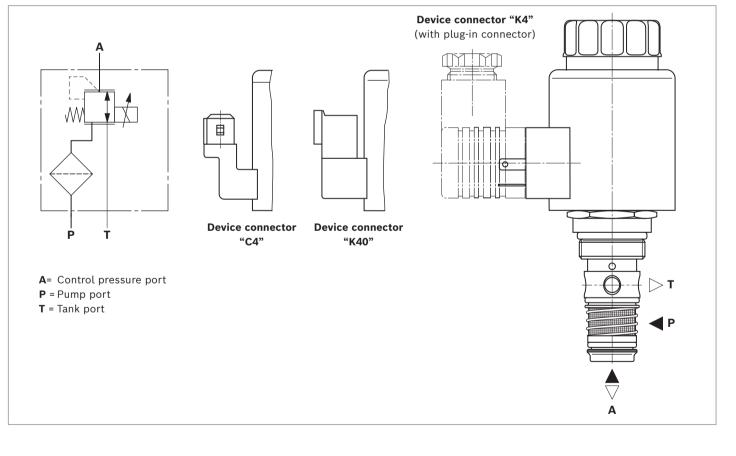
General

The type MHDRE 06 SK proportional pressure reducing valve is a direct operated, 3-way version screw-in cartridge valve. It reduces the control pressure (port **A**) proportionally to the solenoid current and largely works independently of the inlet pressure (port **P**).

When the command value = 0 or in the event of power failure, the minimum pressure is set. Operation is effected by means of proportional solenoid. The solenoid's interior is connected to the port **T** and filled with hydraulic fluid. Depending on the electric command value, these valves can be used to continuously reduce the system pressure. The valve is suitable for controlling couplings, pumps, and directional valves, and is also suitable for use in proportional pilot controls (especially in mobile applications).

Basic principle

The valve regulates the pressure in the port **A** proportional to the current on the solenoid.


The **S** version signifies an increasing characteristic curve, i.e. rising current causes increasing pressure (see characteristic curves on pages 6 and 7).

The proportional solenoid converts the electric current into mechanical force that acts upon the control spool via the armature. The control spool controls the connection between the main ports.

Notice

The tank pressure that occurs (port **T**) is added to the control pressure (port **A**).

Technical data

General				
Weight			kg	0.7
Installation position				Any — if it is ensured that no air can collect upstream of the valve Otherwise, we recommend suspended installation of the valve.
Ambient temperature range			°C	See "Permissible working range" on page 6
Storage temperature range			°C	-40 +80
Salt spray test according to EN	ISO 9227		h	720 (NSS test)
Solenoid surface protection				Coating according to DIN 50962-Fe//ZnNi with thick film passiv- ation
Hydraulics				
Maximum control pressure	Port A	$p_{_{\mathrm{A}}}$	bar	18; 20; 26; 30
Maximum inlet pressure	Port P	$p_{\scriptscriptstyle E}$	bar	100
Counter pressure	Port T	$p_{_{\mathrm{T}}}$	bar	Depressurized (max. 100 bar; the tank pressures that occur are added to the control pressure (port A))
Flow		$q_{_{V}}$	l/min	See characteristic curves page 6
Leakage flow	Port T	$q_{\scriptscriptstyle m L}$	ml/min	120 (5 <i>p</i> _E = 50 bar; <i>I</i> = 0 A; <i>v</i> = 46 mm²/s) (maximum 200)
Pilot oil flow			ml/min	120 ($p_{\rm E}$ = 50 bar; I = $I_{\rm max}$; v = 46 mm²/s) (maximum 300)
Hydraulic fluid				See table on page 5
Hydraulic fluid temperature ran	ge	θ	°C	-40 +120
Viscosity range		ν	mm²/s	5 400
Maximum admissible degree of the hydraulic fluid Cleanless class according to IS				Class 20/18/15 ¹⁾
Hysteresis (within the tolerance			bar	≤1.5 (control pressure 18, 20 bar) ≤2.0 (control pressure 26, 30 bar)
Step response $(T_u + T_g)$ 0 % \rightarrow 100 %; 100 % \rightarrow 0 %			ms	≤60 ($p_{\rm E}$ = 50 bar; v = 46 mm²/s; $q_{\rm v}$ = 0 l/min; dead volume in A = 140 cm ³)
Repetition accuracy			%	<2 % of the maximum control pressure
Load cycles				10 million
Mesh width mesh filter elemen	t Port P		μm	240

 The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.

We recommend using a filter with a minimum retention rate of $\beta_{\rm 10} \geqq 75.$

Electrical						
Voltage type				DC voltage		
Supply voltage		U	V	12	24	
Maximum control current		$I_{\rm max}$	А	1.45	0.7	
Coil resistance at 20 °C			Ω	5	22.5	
Duty cycle (ED) ²⁾			%	100		
Maximum coil temperature ³⁾			°C	185		
Protection class according	Connector version "K4"			IP6K5 with mating connector mounted and locked		
to ISO 20653	Connector version			IP6K6 with mating connector mounted and locked		
	"C4"			IP6K9K with Rexroth mating connector, material no. R901022127		
	Connector version "K40"			IP6K9K with mating connector mounted and locked		
Dither frequency (recomme	nded) ⁴⁾		Hz	150		
Control electronics (separa	te order)			Analog amplifier type RA (Data she	et 95230)	
				BODAS control unit type RC (Data	sheet 95204, 95205, 95206)	
Design according to VDE 05	80					

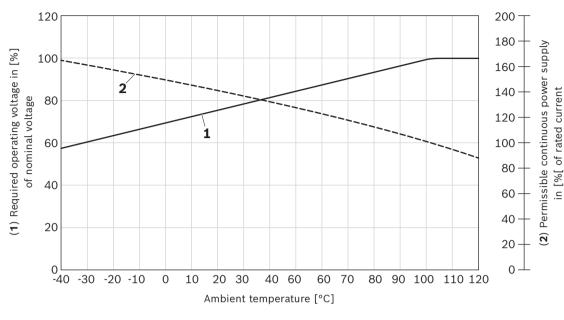
Notice

- The technical data was determined at a viscosity of ν = 46 mm²/s (HLP46; θ_{oil} = 40 °C)
- Please contact us if the unit will be used outside the specified range of values.

Hydraulic fluid

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet
Mineral oils		HL, HLP	NBR, FKM	DIN 51524	90220
Biodegradable	insoluble in water	HEES	FKM	ISO 15380	90221
	soluble in water	HEPG	FKM	ISO 15380	90221

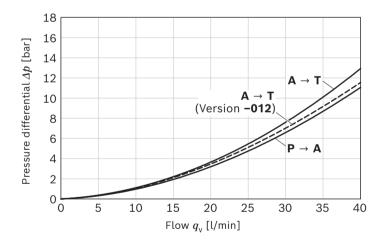
Notice


- Further information and details on using other hydraulic fluids are available in the above data sheets or on request.
- Restrictions are possible with the technical valve data (temperature, pressure range, service life, maintenance intervals, etc.).
- The flash point of the hydraulic fluid used must be 40 K above the maximum solenoid surface temperature.
- Biodegradable: When using biodegradable hydraulic fluids that are also zinc-solving, zinc may accumulate in the fluid.

²⁾ Consultation is recommended for use at >2000 m above sea level.

³⁾ Due to the arising surface temperatures of the solenoid coils, the standards ISO 13732-1 and ISO 4413 must be observed.

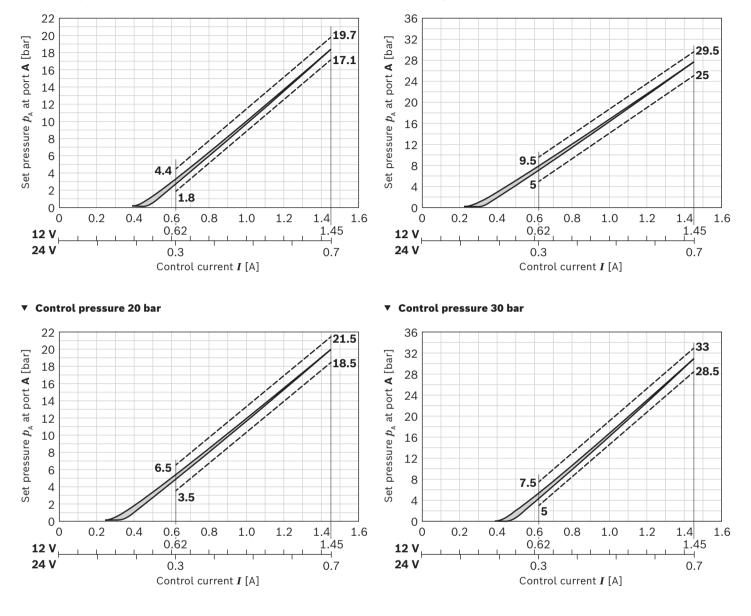
⁴⁾ The dither frequency should be optimized for the application. The working temperature range is to be observed.


Permissible working range

Permissible working range depending on the ambient temperature

Characteristic curves

Δp - $q_{_{\mathrm{V}}}$ flow characteristic curves

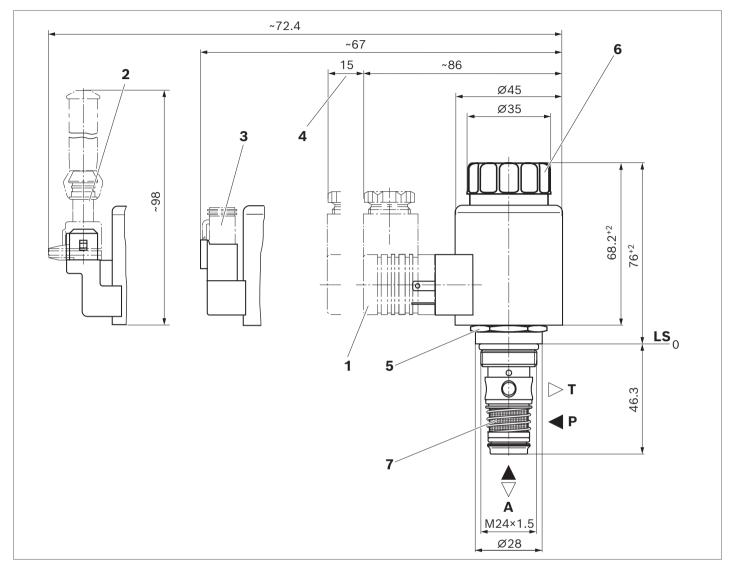

Notice

Characteristic curves measured with HLP46, $\vartheta_{\text{oil}} = 40^{\pm 5} \text{ °C}.$

$p_{\scriptscriptstyle A}$ -I-Characteristic curves with tolerance band

▼ Control pressure 18 bar

▼ Control pressure 26 bar



Notice

Characteristic curves measured with HLP46, $\vartheta_{\rm oil}$ = 40^{±5} °C.

Dimensions

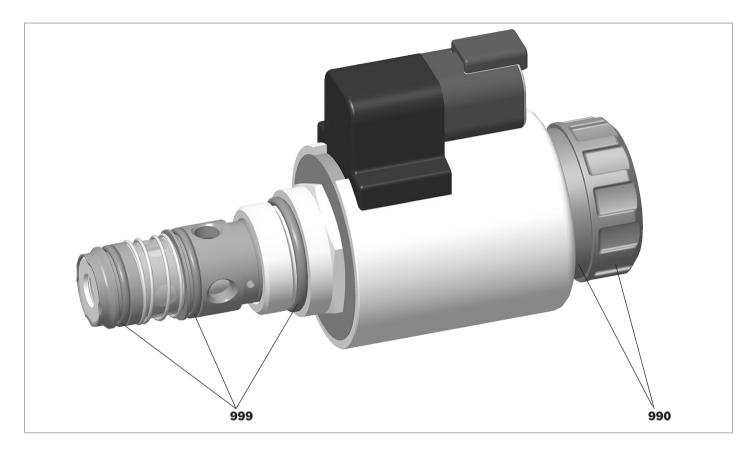

• MHDRE 06

- 1 Plug-in connector for device connector "K4" (separate order, see data sheet 08006)
- 2 Plug-in connector for device connector "C4" (separate order, see data sheet 08006)
- **3** Plug-in connector for device connector "K40" (separate order, see data sheet 08006)
- 4 Space required for removing the mating connector
- 5 SW28 hexagon; tightening torque $M_{\rm A}$ = 10+2 Nm
- **6** Solenoid nut, tightening torque $M_{\rm A}$ = 5+1 Nm
- 7 Filter element

- A= Control pressure port
- **P** = Pump port
- **T** = Tank port
- **LS** = Location Shoulder

Mounting cavity R/MHDRE 06; 3 main ports

Standards:


Workpiece edges	DIN ISO 13715
Form and position tolerance	DIN EN ISO 1101
General tolerance for metal-cutting procedures	DIN ISO 2768-mK
Tolerance	DIN ISO 8015
Surface condition	DIN EN ISO 1302

- A= Control pressure port
- **P** = Pump port
- **T** = Tank port

LS = Location Shoulder

10 **MHDRE 06 SK** | Proportional pressure reducing valve Individual components available

Individual components available

Item	Denomination	Material no.
990	Nut GZ45-01V BG	R961004245
999	Seal kit of the valve	R961003854

Type RA...

Type RC...

Related documents

- Control electronics:
 - Analog amplifier
 - BODAS control unit
- Mineral-oil-based hydraulic fluids
- Environmentally acceptable hydraulic fluids
- MTTF_D values

Data sheet 95230 Data sheet 95204, 95205, 95206 Data sheet 90220 Data sheet 90221 Data sheet 90294

Bosch Rexroth AG

Zum Eisengießer 1 97816 Lohr am Main Germany Tel. +49 9352 18-0 info.ma@boschrexroth.de www.boschrexroth.com © Bosch Rexroth AG 2021. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.